Expert-opinions Based Linear Regression Model for Top-N Recommendation
نویسندگان
چکیده
منابع مشابه
Recommendation Based on Contextual Opinions
Context has been recognized as an important factor in constructing personalized recommender systems. However, most contextaware recommendation techniques mainly aim at exploiting item-level contextual information for modeling users’ preferences, while few works attempt to detect more fine-grained aspect-level contextual preferences. Therefore, in this article, we propose a contextual recommenda...
متن کاملFeature-based factorized Bilinear Similarity Model for Cold-Start Top-n Item Recommendation
Recommending new items to existing users has remained a challenging problem due to absence of user’s past preferences for these items. The user personalized non-collaborative methods based on item features can be used to address this item cold-start problem. These methods rely on similarities between the target item and user’s previous preferred items. While computing similarities based on item...
متن کاملContent-Based Top-N Recommendation Using Heterogeneous Relations
Top-N recommender systems have been extensively studied. However, the sparsity of user-item activities has not been well resolved. While many hybrid systems were proposed to address the cold-start problem, the profile information has not been sufficiently leveraged. Furthermore, the heterogeneity of profiles between users and items intensifies the challenge. In this paper, we propose a content-...
متن کاملIntegrated Expert Recommendation Model for Online Communities
Online communities have become vital places for Web 2.0 users to share knowledge and experiences. Recently, finding expertise user in community has become an important research issue. This paper proposes a novel cascaded model for expert recommendation using aggregated knowledge extracted from enormous contents and social network features. Vector space model is used to compute the relevance of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DEStech Transactions on Computer Science and Engineering
سال: 2018
ISSN: 2475-8841
DOI: 10.12783/dtcse/cmsms2018/25249